
18.06 MIDTERM 1 - SOLUTIONS

PROBLEM 1

(1) Use Gaussian elimination to put the matrixA =


1 0 2 0
−1 2 −2 −1
0 −2 0 0
0 0 0 −2

 in row echelon form.

Show all your steps! (10 pts)

Solution: Using Gaussian elimination we get:
1 0 2 0
−1 2 −2 −1
0 −2 0 0
0 0 0 −2

 r2+r1−−−→


1 0 2 0
0 2 0 −1
0 −2 0 0
0 0 0 −2

 r3+r2−−−→


1 0 2 0
0 2 0 −1
0 0 0 −1
0 0 0 −2

 r4−2r3−−−−→


1 0 2 0
0 2 0 −1
0 0 0 −1
0 0 0 0


so:

U =


1 0 2 0
0 2 0 −1
0 0 0 −1
0 0 0 0



(2) Use part (1) to write A = LU , where L is lower triangular and U is upper triangular.

Then express L as a product of elimination matrices E
(λ)
ij for various i > j and numbers λ.

(10 pts)

Solution: We can rewrite the row operations in part (1) as multiplications by elimination

matrices. The first step is given by E
(1)
21 , the second by E

(1)
32 and the third by E

(−2)
43 . Thus:

E
(−2)
43 E

(1)
32 E

(1)
21 A = U

By using (E
(λ)
ij )−1 = E

(−λ)
ij we get:

A = E
(−1)
21 E

(−1)
32 E

(2)
43 U



hence:

L = E
(−1)
21 E

(−1)
32 E

(2)
43 =


1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 2 1



(3) Find a linear combination of the columns of A which is


0
0
0
0

. Hint: the answer to (1)

may help. (5 pts)

Solution: Since U is obtained from A by row operations, it suffices to solve the problem
for U . By inspection, it’s easy to see that the third column of U is equal to twice its first
column. Hence the same is true for A:(

third column
)
− 2
(

first column
)

= 0

(4) Explain why for any 4× 4 matrix X, the product AX cannot be invertible. (5 pts)

Solution: By part (3), the columns of A are linearly dependent (since the third column is
a linear combination of the first column), so they span a vector space of dimension at most
3 < 4. Since the columns of AX are linear combinations of the columns of A, we conclude
that the columns of AX also span vector space of dimension at most 3 < 4. So AX cannot
be invertible, since invertible matrices have full dimensional column space.

PROBLEM 2

Consider the system of equations:{
a− 2b+ 6c = 1

−2a+ 3b− 11c = −3
(∗)

(1) Write the system as A

ab
c

 = b for a suitably chosen 2× 3 matrix A and 2× 1 vector b.

(5 pts)



Solution:We can rewrite the system of equations as:[
1 −2 6
−2 3 −11

]
︸ ︷︷ ︸

A

ab
c

 =

[
1
−3

]
︸ ︷︷ ︸

b

(2) Use Gauss-Jordan elimination to put A from part (1) in reduced row echelon form.

Show all your steps! Hint: we recommend you actually do Gauss-Jordan elimination on
the extended matrix

[
A b

]
; it’s a little bit more work, but it will pay off in part (4).

(10 pts)

Solution: First add twice row 1 to row 2:[
1 −2 6 1
−2 3 −11 −3

]
 

[
1 −2 6 1
0 −1 1 −1

]
Then multiply row 2 by −1, to get all pivots equal to 1:[

1 −2 6 1
0 −1 1 −1

]
 

[
1 −2 6 1
0 1 −1 1

]
Finally, add twice row 2 to row 1:[

1 −2 6 1
0 1 −1 1

]
 

[
1 0 4 3
0 1 −1 1

]

(3) Write down the vector(s) in a basis for the nullspace of A. What is the dimension of this
nullspace? Explain how you know! (10 pts)

Solution: The nullspace is unaffected by Gauss-Jordan elimination, so it is the set of vectorsab
c

 such that:

[
1 0 4
0 1 −1

]ab
c

 = 0 ⇔

{
a = −4c

b = c

The pivot variables are a and b, and the free variable is c. Recall that a basis vector is given
by setting c equal to 1, and using the equations above to solve for a and b:

a basis vector of N(A) is

−4
1
1





Therefore, the dimension of N(A) is 1.

(4) What is the general solution of the system (∗)? (10 pts)

Solution: A particular solution can be obtained by setting the free variable c equal to 0,
and solving for the pivot variables:{

a− 2b = 1

−2a+ 3b = −3
(∗)

You can solve this 2 × 2 system in a number of ways (including back substitution) and we
notice that a = 3, b = 1 is the solution. Equivalently, if you did Gauss-Jordan for the
extended matrix in part (2), then the system is equivalent to:{

a + 4c = 3

b− c = 1
(∗∗)

Setting the free variable c = 0 gives you, yet again ,a = 3, b = 1. Hence a particular solution
of the equivalent systems (*) and (**) is:ab

c

 =

3
1
0


The general solution is given by adding the particular solution to an arbitrary element of
the nullspace: ab

c

 =

3
1
0

+ α

−4
1
1


for any number α.

PROBLEM 3

(1) Let V be the following vector subspace of R2:

V =

{[
x
y

]
such that 3x+ 4y = 0

}
Find a basis for W = V ⊥ (in other words, W is the orthogonal complement of V ). (5 pts)



Solution: By the very definition of the vector space V , any vector

[
x
y

]
is orthogonal to the

vector

[
3
4

]
, since: [

x
y

]
·
[
3
4

]
= 3x+ 4y = 0

We conclude that a basis of W is

[
3
4

]
.

In what follows, you may use the formula PC(A) = A(ATA)−1AT for the

projection matrix onto the column space C(A) of any matrix A

(2) Compute the projection matrices PV and PW onto the subspaces from part (1). (10 pts)

Solution: We need matrices A and B whose column spaces are the vector spaces V and W ,

respectively. Since the vector space W is one-dimensional and spanned by the vector

[
3
4

]
,

the natural candidate is:

B =

[
3
4

]
Meanwhile, the vector space V is one dimensional (a line in the plane), so we must choose
a single non-zero vector in V . One way to do so is to set one of the variables x, y equal to
any number, and then solve the equation 3x + 4y = 0 for the other variable. So we could

say that V is spanned by the vector

[
4
−3

]
. Hence we can take:

A =

[
4
−3

]
Then we can calculate:

PV = A(ATA)−1AT =
1

25

[
16 −12
−12 9

]
PW = B(BTB)−1BT =

1

25

[
9 12
12 16

]

(3) Compute PV PW and PWPV , where PV and PW are as in part (2). (10 pts)



Solution: It is straightforward to compute:

PV PW =
1

25

[
16 −12
−12 9

]
1

25

[
9 12
12 16

]
=

1

625

[
16 · 9− 12 · 12 16 · 12− 12 · 16
−12 · 9 + 9 · 12 −12 · 12 + 9 · 16

]
=

[
0 0
0 0

]
PWPV =

1

25

[
9 12
12 16

]
1

25

[
16 −12
−12 9

]
=

1

625

[
9 · 16− 12 · 12 −12 · 9 + 9 · 12
16 · 12− 12 · 16 −12 · 12 + 16 · 9

]
=

[
0 0
0 0

]

(4) Based on part (3), formulate a general principle by filling the blanks below:

For any vector spaces V and W , the projection matrices have the property that

PV PW and PWPV are 0 if V and W are orthogonal

After formulating the principle above, justify it using a geometric argument (i.e. using the
geometric interpretation of projections). (10 pts)

Solution: Taking the matrix PV PW and multiplying it with any vector b means the same
thing as projecting b onto the vector space W (this is the operation b  PWb) and then
projecting the result onto the vector space V (this is the operation PWb PV PWb). But if
V and W are orthogonal to each other, then this sequence of two operations should give 0.


